Millimetre Wave Technologies for STEAM-R

Simon Rea^{1*}, B. Alderman¹, B. Moyna¹, G. Maxwell-Cox², R. Hammett², A. Dawkins², Y. Munro²

¹Millimetre Technology Group, STFC RAL Space, Didcot, UK, OX11 0QX ²Astrium Ltd, Anchorage Road, Portsmouth, PO3 5PU

© 2010 RAL Space

PREMIER & STEAM-R (1)

- PREMIER is a candidate Earth Explorer 7 mission
 - PRocess Exploration through Measurements of Infra-red and millimetre wave Emitted Radiation
 - Focussing on Upper Troposphere / Lower Stratosphere region
- Synergistic deployment of Infra-red and Millimetre wave instruments on same satellite platform
- Millimetre wave instrument is STEAM-R
 - Stratospheric Tropospheric Exchange And Monitor Radiometer
 - Swedish led instrument based on ODIN
 - Provides trace gas measurements in the presence of cirrus cloud & deep into the upper troposphere (H₂O, CO, O₃, N₂O,)

RAL Space

PREMIER & STEAM-R (2)

- Characteristics of STEAM-R
 - Spectral range 310-360 GHz
 - Limb-sounding geometry for high vertical resolution
 - Large reflector (1.6m × 0.8m) for narrow FOV
 - Fixed receiver array for 14 simultaneous views through the UTLS region
 - Use of image-rejection mixers to improve measurements of trace gases in the upper troposphere

© 2010 RAL Space

STEAM-R viewing geometry

Overview of CEOI STEAM-R Activities

- Science support
 - Consolidation of science case for PREMIER / STEAM-R
 - STEAM-R optimisation for upper tropospheric observations
 - Refinement of STEAM-R frequency plan
- Critical hardware analysis and development
 - Fore-Optics analysis
 - Design & error analysis of dual-reflector antenna sub-system
 - Definition and breadboarding of optics concepts for close stacking of multiple beams
 - Sub-Harmonic Image-Rejection Mixer (SHIRM) development
 - First demonstration of 340 GHz image-rejection mixer using Schottky diodes

Fore-Optics Analysis (1)

Advanced error analysis on STEAM-R primary reflector

- Systematic distortions (simulating thermal errors) 15 -100 micron
- Random Surface errors (simulating manufacturing errors) 15-100 micron
- Physical Optics analysis ±20 deg in patterns (extended SAPIENS software)
- Typical scanned off-axis beam patterns analysed (**2hr to 8hr per run**)
- Detailed pattern data supplied to RAL for support to Data Retrieval Analysis – PREMIER Study

Fore-Optics Analysis (2)

Concepts for close stacking of multiple beams

- Feedhorn cluster
- Spatial beam-splitting
- Modelled using Beam-Propagation Synthesis (Code-V) & Ray Tracing (Zemax)
- Breadboard developed to corroborate modelled results

RAL Spa

Feed cluster

Spatial beam splitting

Optics breadboarding

SHIRM Development (1)

- Development & comparison of two SHIRM topologies
- Development of highly-integrated IQ mixer blocks for each topology (shaded)
- SHIRM completed by commercial IF hybrid (connectorised)
- Requirements: high level of sideband rejection, low SSB receiver noise temperature

SHIRM Architecture

SHIRM A: Internal Detail

SHIRM Development (2)

Demonstrated Performance

- Sideband Rejection
 - SHIRM A: >20 dB (IF bandwidth 2-14 GHz)
 - SHIRM B: >15 dB (IF bandwidth 2-14 GHz)
- SSB Receiver noise temperature
 - 3000 K (T_{IF}=70 K)

SHIRM A: Measured Sideband Rejection

Current Work

- SHIRM development continues in CEOI 4th Open Call
- SHIRM qualification to TRL-5
 - Must be demonstrated by end of PREMIER Phase A study (ESA)

RAL Sp

- New SHIRM design to pass environmental testing
- Environmental testing (vibration/shock, thermal vac, humidity)
 - Exact test specifications TBC
- First spectral measurements
 - Lab gas cell tests or atmospheric tests at Jungfraujoch observatory
 - Development of SHIRM-based radiometer
 - Confirmation of SHIRM performance through spectral measurements
 - DSB v SSB spectral measurements